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1 Introduction

This note outlines one way to attack the problem of determining which stars will be observed by

FAME at what time. This involves projecting FAME's focal plane onto a 1.1�-wide circle in the

sky as a function of time, determining which stars from the input star catalog are within that �eld,

and relating the coordinates of star images to speci�c pixels on the CCDs.

This is written primarily for the relatively low-accuracy (�half pixel = 0.1 arcsecond) problem of

scheduling the observations by FAME's on-board system, using as few trig functions (=CPU cycles)

as possible. It is likely that the same kind of algorithm will be needed on the ground for the \quick

look" system. Also, we may have to reconstruct FAME's observing sequence simply to identify

which stars were observed at speci�c times. It is also possible that a �rst-order approximation to the

observation geometry might be useful as part of the data analysis pipeline. I believe the approach

outlined below can also be used, iteratively, as the basic framework for more precise computations

(comments on that are in Section 4). The emphasis here is on linearizing the computations; with

40 million stars in the input catalog, doing traditional spherical trigonometry on the whole lot is

out of the question. Fortunately, we need only deal with a fraction of the catalog at any one time,

and spherical trig can be generally be avoided without compromising accuracy.

Reference is made below to equations in a 1989 AJ paper [1] that describes in detail the com-

putation of apparent places of stars from catalog data. Much of the contents of that paper were

used for the Explanatory Supplement to the Astronomical Almanac [2] Sections 3.31{3.33. Also

listed below in several places are the names of the Fortran subroutines in the NOVAS package [3],

which implement the algorithms in the 1989 paper. NOVAS is available in both Fortran and C at

http://aa.usno.navy.mil/software/novas/. I'm sure there are equivalent SLALIB routines.
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It's worth mentioning that a complete catalog-to-apparent-position calculation for stars, carried

out in the ICRS frame, can be performed on an observation-by-observation basis by NOVAS sub-

routine VPSTAR, speci�cally through its entry point LPSTAR. VPSTAR/LPSTAR calls a series of

lower-level NOVAS subroutines to handle individual e�ects | proper motion, parallax, aberration,

etc. LPSTAR is designed for the case of Earth-based observations so the geocentric position and

velocity of the observer that it uses would have to be replaced by those of FAME. Using a slightly

modi�ed VPSTAR/LPSTAR directly for each FAME observation would impose a signi�cant com-

putational load which might be justi�ed for precise simulations or data analysis but not for the

on-board or quick-look system. The accuracy of VPSTAR is several orders of magnitude better

than what is needed for these tasks.

In this note I outline how the required calculations can be partitioned and approximated (and in

some cases skipped) to yield usable focal-plane coordinates and times of transit across the relevant

CCD �ducial lines. In the next section I address the individual geometric and physical e�ects that

must be accounted for. Then, in Section 3, I describe a simple scheme for putting it all together to

determine the observing sequence, given a model of FAME's rotation. E�ciency of computation is

the primary consideration. Along the way, I make some comments about the di�erences between

quick-and-dirty calculations and the computational approach needed for the much higher accuracy

applications of simulation and data analysis.

2 General Considerations

2.1 Position and Proper Motion

An important aspect of the computation scheme outlined in Section 3 involves dividing the sky

into boxes, called tiles, of approximately one square degree, each of which would contain on average

1000 stars from the FAME input catalog. We can store the positions of the centers of the boxes

as well as those of the individual stars in the form of 3-D vectors. This takes 50% more storage

than spherical coordinates, obviously, but has computational advantages since most of the required

calculations downstream can be put in a form that just involves dot products. That is, we store,

for each star, the vector:

p0 = p(t0) = r

0
B@

cos � cos�

cos � sin�

sin �

1
CA (1)

where t0 refers to some convenient time within the FAME mission and the � and � values are for

that epoch, in the ICRS system. This is eqn. (30) of [1]. By storing the catalog this way, we

evaluate many of the trig functions up front rather than in real time. Note that you can use the
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factor r (normally 1) to scale the vector for the star's distance. In NOVAS, r is the star's distance

from the Sun in AU (it's done that way so the same routines can be used for stars and solar system

objects). Obviously scaling the vector for distance gives us 3-D coordinates and the extra 50%

storage is not wasted. The large uncertainty in the distance parameter r for most stars is actually

irrelevant because it drops out whenever angles are formed. (When the parallax of a star is not

known, NOVAS sets it to 10�7 arcsec, a rather arbitrary number.) When r > 1, what we're doing

is storing a position vector rather than a direction vector.

However, there is a computational advantage in using direction vectors, that is, keeping r=1:

we avoid the need for normalization | involving the square root function | when dot products

are taken later. I think that on board FAME, the catalog should be stored this way, even though

we will have a corresponding catalog on the ground stored in position-vector form.

The star position vectors will have to be updated for proper motion at intervals which depend

on the accuracy requirement. For the on-board system, I assume the catalog will be updated

periodically from computations done on the ground. For 0.1 arcsec accuracy, the updates need to

be done only every few months, and then for only a small subset of relatively high proper motion

stars. Most stars will need no proper motion update during the entire mission. For high-accuracy

analysis or simulations, however, the update rate is much higher: a star with 1 arcsec/year proper

motion travels 1 �as every 30 seconds. There are only a few of those, of course, and maybe we don't

need 1 �as, but for the high-accuracy work, position updates several times per day will clearly be

needed for many stars.

A star's position vector can be very rapidly updated for proper motion using a pre-computed

space-motion vector as given in eqns. (31){(33) of [1]. If we call the space motion vector _p, all

we're doing is using p(t) = p0 + _p(t � t0), which automatically takes care of the \foreshortening"

of the stellar paths for nearby stars. NOVAS routines VECTRS and PROPMO do everything,

using a position vector with components in AU and a space motion vector with components in

AU/day. Again, in forming the space motion vector once for each star, we take care of a lot of

the trigonometry up front. Nasty spherical-trig e�ects in proper motion near the celestial poles are

totally avoided in the vector approach. However, as I said before, before any recomputed vectors

are uploaded to FAME, they should be normalized.

2.2 Binary Star Motion

Note that so far we have taken care of linear space motion only. For the relatively small number of

stars that are components of binary systems with known orbits, and if the computational accuracy

requires it, the o�set of the star from the center of mass of the system should be computed and
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added in. (There is no NOVAS routine for handling binary orbits, but I'm sure one can be obtained

from either the USNO speckle or NPOI groups.) This assumes that the position and proper motion

used above do, in fact, refer to the system's center of mass. That will not always be the case;

catalog data for binaries represent a notorious hodge-podge of di�erent reference points. For low

accuracy applications with a short span of observations there is a shortcut available: for binaries

with periods > several times the span of observations, we can simply absorb the orbital arc into

the position and proper motion of each component, thus �nessing the extra orbital calculation. If

we characterize the orbital arc by a center of curvature, from which we measure the arc's radius �

and angular span ��, then linearizing the orbital motion will work if

�

2
[ 1� cos(��=2) ] < � (2)

where � is the tolerable astrometric error. For example, for the FAME on-board system (� � 0:1

arcsec), folding the orbital motion of a star into its position and proper motion will work for an

orbital arc of up to 90� if � < 0:7 arcsec. (For circular orbits seen face-on, � is the same as the

semimajor axis of the orbit and �� = 2��t=P , where �t is the time span of observations and P

is the orbital period.)1

The point in the calculations where proper and orbital motion should be added in depends on

the update frequency. Doing it at the wrong point will result in redundant calculations. For the

on-board system, where the update frequency can be a few times per year or less, all necessary

updates for the whole input catalog should be performed at once. But for high-accuracy analysis

or simulations, where the update frequency might be several times per day or more, it makes sense

to perform the updates only on a spiral-by-spiral, or �eld-by-�eld, basis.

2.3 Parallax, Light-Bending, and Aberration

Parallax, gravitational light bending, and aberration depend on time and position on the sky, and

parallax additionally depends on a star's distance. These corrections should therefore be computed

only when the time that a particular �eld will be observed is known. The equations are given in

[1] and are performed (for star position vectors with components in AU) by NOVAS subroutines

GEOCEN, SUNFLD, and ABERAT. Of course, for the FAME case, the geocentric position and

velocity vectors of an Earth-based observer would be replaced by the corresponding vectors for

FAME. More on that below. Another note: at the highest accuracy, SUNFLD and ABERAT may

need to be replaced by routines with higher-order relativity terms built in. Certainly at least we

need to add the gravitational deection by the Earth, Jupiter, and Saturn.

1I have a technical note about half completed where the equations for proper motion contaminated by binary

orbital motion are worked out.
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The good news is that for the on-board or quick-look systems, parallax and gravitational light

bending can be skipped, and an e�cient aberration algorithm is available with better than the

needed accuracy.

There are, of course, several hundred or so stars with parallaxes > 0.1 arcsec. The most e�cient

scheme is simply to handle these as special cases by the on-board system. The on-board catalog

could contain a one-bit ag for these stars, which would indicate that their position vectors (rather

than direction vectors) were stored. Then if p is the position vector of the star, and F(t) is the

position vector of FAME with respect to the solar system barycenter (the components of these

vectors must be in the same units, e.g., AU) then to correct for parallax we simply form p0 = p� F

and normalize.

For normalized (direction) vectors, aberration can be applied equally easily, once FAME's veloc-

ity vector _F(t) is known. Simply compute p0 = p+ _F=c and renormalize. Or, to avoid the square

root, use the following:

p0 = p+
_F

c
�

 
_F

c
� p

!
p (3)

In this expression, if p is normalized, so is p0. The formula is accurate to better than 1 mas.

(Omission of gravitational light bending results in errors of up to 10 mas for FAME.) It is tempting

to set p to refer to the center of a FAME �eld and add the aberration o�set (everything to the

right of the + sign) to the direction vectors of all the stars in the �eld. Although this will work

over a large part of the sky, it can result in errors > 0.2 arcsec at the edge of the �eld in the worst

case. Even computing aberration separately for each quadrant of the �eld can result in errors of

over 0.1 arcsec. Fortunately, the above formula is computationally light and its application to each

star in the �eld of view is not a signi�cant problem.

These e�ects require a model of the Earth's orbit with respect to the solar system barycenter

and a model of FAME's orbit with respect to the center of mass of the Earth. Position and velocity

vectors from the two models can simply be added together to yield FAME's position and velocity

with respect to the solar system barycenter. Consider the Earth's orbit �rst. How good does it

have to be? For the on-board or quick-look systems, not very. For the few parallax calculations

that have to be performed, a circular orbit approximation is perfectly adequate. For aberration,

the eccentricity of the orbit (0.017) has to be taken into account, but nothing more complex.

The approximation to the Sun's coordinates on page C24 of the Astronomical Almanac could be

adapted for this. However, there is an even simpler scheme. The velocity of the Earth in its elliptic

orbit can be obtained by adding a small constant velocity vector to the instantaneous circular-orbit

velocity vector. This means that, taken in isolation, the elliptic component of annual aberration

shifts each star away from its catalog position by a constant amount. So, the e�ect of the Earth's

eccentricity on aberration (of order 0.3 arcsec) can be embedded in the coordinates of the on-board
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star catalog. This scheme was used in old star catalogs, before the days of computers, so that

a circular Earth orbit could be used for apparent place computations. The o�sets of the star

positions were known as the elliptic terms (or simply E-terms) of aberration, and are described in

the Explanatory Supplement [2]. If the E-terms are embedded in the star coordinates in this way,

a circular Earth orbit can be used for aberration as well as parallax.

As one might expect, FAME's orbit around the Earth is irrelevant for the on-board parallax

calculation but a simple model of the orbit must be used for the aberration calculation. FAME's

orbital speed is about 3 km/s, about 10% of the Earth's orbital speed, so FAME's motion adds as

much as 2 arcsec to aberration. For the on-board system we therefore need to compute FAME's

instantaneous velocity with respect to the Earth to only about 5%. FAME's nominal orbit is

circular, and a circular model should work unless things go very awry.

For precise simulations or data analysis the orbital models of the Earth and FAME must be

rather sophisticated. The Earth's instantaneous position and velocity vector can be retrieved

e�ciently from the JPL DE-405 planetary/lunar ephemeris. The JPL ephemeris is accurate enough

for FAME analysis and is in the ICRS system. JPL distributes it in the form of Chebyshev series

along with software to perform the series evaluations for any required time. NOVAS accesses the

JPL ephemerides through a subroutine called SOLSYS. James Hilton of USNO's AA Dept. has

developed software that repackages the JPL ephemerides into a more compact form, and we can

probably get such a package custom built for FAME applications that would be very fast. (The

JPL routines are in Fortran but Hilton's are in C.)

For the high accuracy computations, FAME's orbit around the Earth must be accounted for in

both the parallax and aberration calculations. Parallax is the less stressing requirement, of course.

The parallax computation for the nearest stars requires that we compute FAME's orbital position to

about 500 km, about 1% of its geocentric orbital radius. For the aberration computation, however,

FAME's velocity must be known to 1.5 cm/s, about 5� 10�6 of the geocentric orbital speed. It is

interesting to note that in the time it takes a star to cross FAME's �eld (�6 s), FAME's orbital

velocity changes by over 1 m/s | equivalent to an aberration change of almost 1 mas! Needless to

say, accounting for aberration to the accuracy needed for data analysis presents quite a technical

challenge for the spacecraft tracking and orbit determination system and even a�ects the choice of

orbit used.

2.4 FAME's Orientation and Spin

In dealing with FAME's angular motion, we must use coordinate systems that are �xed in the

spacecraft and coordinate systems that are �xed in inertial space. We will use lower-case letters,

6



x, y, and z, to refer to the spacecraft-�xed axes and upper-case letters, X, Y, and Z, to refer to

the ICRS (inertial) system axes. If we use the coordinate system shown on Foldout 2 of the CSR,

where z is the nominal symmetry (spin) axis (with +z on the instrument side of the spacecraft)

and y is along the main optical axis (with +y bisecting the two aperture directions), then the two

apertures are in the directions

q1 = �x sin(=2) + y cos(=2)

q2 = x sin(=2) + y cos(=2) (4)

where  = 84:3� is the basic angle. The direction q1 represents the leading aperture. (See Ap-

pendix A for a generalization of eqn. (4) for the case where the aperture directions are not perfectly

aligned.)

I assume that we have, or will have, a subroutine that can provide, for any input time t, the

instantaneous orientation of FAME in the ICRS system. That is, a subroutine that provides the

parameters that allow us to transform between the [x;y; z] system and the [X;Y;Z] system for

any time. This subroutine could obtain its information from FAME's on-board attitude control

system, from analysis of observations, or some combination. For the algorithm described here, this

subroutine is a black box. I am not trivializing the problem of providing such a function; it is

simply beyond the scope of this note.

FAME's orientation can be characterized in a variety of ways. One way is to provide the values

of three Euler angles and their rates of change. Another is to specify the (X;Y;Z) coordinates (or

the equivalent (�; �) pairs) of two of the three spacecraft axes, along with the rotation components

around all three axes. Or, quaternions can be used to specify the instantaneous orientation. Most

of FAME's rotation is around the z axis, of course, but not all | there is a 203 arcsec di�erence

between the z axis and the instantaneous total angular velocity vector, caused by the spacecraft's

precession. This means that the xy-plane is not exactly orthogonal to the spin axis; this is why

stars crossing the CCDs have up to a 4 pixel cross-scan drift due to precession.

If we are dealing with FAME's observed attitude, we need to be able to take a series of discrete

measurements of FAME's instantaneous orientation and derive from them not just the directions of

the two observing ports at any time (a straightforward interpolation problem) but also the direction

of FAME's instantaneous spin vector. Suppose we have two rotation matrices, A(tn) and A(tn+1),

representing the spacecraft attitude at two times tn and tn+1 within a short interval (seconds; see

above discussion). Then

A(tn+1) = R A(tn) (5)

where R is the rotation matrix representing the in�nitesimal spin of the spacecraft between times

tn and tn+1. We simply extract R by multiplying both sides by the transpose (inverse) of A(tn):
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A(tn+1)A
t(tn) = R A(tn)A

t(tn)

A(tn+1)A
t(tn) = R (6)

By Euler's theorem, the eigenvector of R represents the direction of the spin axis. The decomposi-

tion of a general rotation matrix, like R, into spin axis components and spin angle is given in eqn.

E-6 of [4], p. 762. Similarly, in quaternion notation, the spacecraft attitude at times tn and tn+1

can be represented by two unit quaternions, a(tn) and a(tn+1), and

a(tn+1) = a(tn) r (7)

where r is the quaternion representing the rotation between the two attitude states. The vector part

of r represents the direction of the instantaneous spin axis. In fact, as the interval tn+1 � tn ! 0,

a fundamental equation of quaternions can be applied:

_a =
1

2
! a (8)

where ! is the angular velocity vector (= a quaternion with scalar part 0 and vector part equal to

the spin axis). Application of this equation to obtain ! would require numerical di�erentiation of

the sequence of attitude quaternions a(t), but that is a simple process with measurements spaced

at short intervals.

3 Computing the Observing Sequence

I assume that the software will progress in a loop where the time t advances by of order 1 second per

cycle. The time increment �t between cycles is determined by the requirement that any curvature

of the loci of the star images across the focal plane during the time �t results in an in-scan and

cross-scan error within the astrometric tolerance for the calculation. The algorithms that follow

assume linear apparent motion of the stars across the focal plane, after spacecraft rotation and

optical �eld distortion have been taken into account; for high accuracy applications, the curvature

of these paths can be handled by successive iterations.

The greatest part of the nonlinearity in the stars' paths is due to the spatial variation of the

optical distortion. As of mid-February 2001, the 3rd order distortion of the FAME optical design

was estimated to be 3.6 arcsec/degree3. This distortion will cause nonlinearities in stellar paths

over �t = 1 second of up to 0.1 arcsec (1/2 pixel) in one coordinate. This is just within our

tolerance of error.

There are also nonlinearities due to the spacecraft spin dynamics. For example, second-order

precession (the change in apparent cross-scan drift rate with spin angle) a�ects the instantaneous
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position of a star image in the �eld of view by at most 0.7 mas/s
2
cross-scan. From Marc's analysis,

it appears that gravity gradient e�ects should be about a quarter this amplitude. We are lucky that

the nutation period is almost as long as the spin period, so that even if it is excited to a 10 arcsec

amplitude, its second-order e�ect would be < 100 �as/s2 cross-scan. The second-order e�ects are

generally smaller in-scan. Other short-term e�ects, generally grouped under the name \jitter",

could upset this neat picture if su�ciently large, although Marc's spin dynamics simulations have

not identi�ed any. In summary, over a few seconds, the star motions are certainly linear enough for

the on-board or quick-look calculations and even for more precise applications. A shorter interval

for the basic loop can always be chosen.

3.1 Selecting the Stars

Rapidly calculating the observing sequence with limited computer power depends on performing as

few trigonometric function evaluations as possible. With an input catalog of 40 million stars, the

key is Lockheed's proposal to divide the input catalog into subcatalogs by position. Let's assume

that we divide the catalog into �40,000 �elds of approximately one square degree, which are called

\tiles" in the CSR (p. 4-49). Here we assume that the tiles are approximately square and all

have approximately the same dimensions. Each tile will contain 1000 stars on average, although

there will be a wide variation. See the Lockheed memo by van Bezooijen [5] for a description of

the proposed tiling scheme. I assume that we have a subroutine that, given an input unit vector

representing a point on the celestial sphere, returns the number of the tile that contains the point,

along with the unit vector representing the center of the tile. It is also necessary to have a scheme

that, given a speci�c tile number, delivers all the tile numbers of adjacent tiles.

As stated above, the software loop will cycle in time increments �t of order 1 sec: t1, t2, t3, : : : .

Given a time tn, we obtain the instantaneous directions of FAME's axes: x, y, and z, all of which

are unit vectors expressed in the ICRS system. We can then compute the direction vectors of the

two apertures, using eqn. (4), which we will call q1 and q2. These unit vectors point to the centers

of �elds 1 and 2, respectively, in the ICRS system. We also need to obtain FAME's instantaneous

spin vector !, in radians/second.

The scheme for identifying the stars that pass through �eld k (k=1 or 2) is as follows. We �rst

use our tile number subroutine, providing as input the unit vector qk, the center of �eld k at time

tn. It provides the tile number that contains the center of �eld k along with the unit vector pointing

to the tile's center. We then retrieve the tile numbers and unit vectors of all the neighboring tiles

(one \ring" around the center tile is probably su�cient).

It is likely that more tiles would be identi�ed this way than would actually be needed for a
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speci�c �eld. Obviously we don't want to deal with more stars than is necessary. The candidate

tiles could then be easily culled by computing � = pi � qk, where pi is the direction of the center

of tile i and qk is the direction of the center of �eld k. Tiles would be kept for further analysis if

� > cos r, where r is an angular radius computed as illustrated in Figure 1.

Figure 1 shows one of the FAME �elds of view as the smallest circle and its path across the sky

as the inner parallel lines. The star catalog tile boundaries and centers are indicated. In order to

ensure that all the stars within the instantaneous �eld are identi�ed, it is necessary to inspect the

contents of all tiles with centers within a larger circle, shown dotted. That circle has a radius equal

to the FAME �eld radius (0.55
�
) plus half the largest tile diagonal (�0.7

�
) plus a small allowance

for aberration (0.007
�
). The tiles that satisfy this criterion, for the indicated position of the �eld,

are shown shaded. The projection of the diameter h of the dotted circle along the path of the �eld

is indicated by dotted parallel lines. As the �eld moves, the software must eventually inspect the

contents of all tiles with centers in this wider path. The �eld moves smoothly, but the software

doesn't. The program advances in discrete time steps of �t seconds, during which the center of

the �eld moves an angular distance �s = (0:15�=s)�t. At each step, then, we must inspect the

tiles with centers within an even larger circle to guarantee that no part of the area inspected has

a width less than h. This is the same as saying that the overlap region between two successive

inspection circles must have width h, as shown in the �gure. This largest circle has the radius r

that we seek:

r =

s�
�s

2

�
2

+

�
h

2

�
2

=

s�
�s

2

�
2

+

�
f +

d

2
+ a

�
2

(9)

where �s is the angular distance moved at each step, f is the FAME �eld radius, d=2 is half the

largest tile diagonal, and a is the aberration allowance. It is obvious that keeping the step size �s as

small as possible minimizes the sky area (i.e., number of tiles) to be inspected.
2 For 1 second time

steps and 1
�
square tiles, r = 1:27�, de�ning a circle only 0.5% in area larger than the absolute

minimum possible. If the time step is increased to 5 seconds, the inspection circle area is 35%

larger. The quantity cos r is a constant that needs to be calculated only once.

The same considerations apply to a distance test for individual stars, except that there is nothing

that corresponds to the tile diagonal. The distance-test circle for individual stars would therefore

have radius r0:

r
0

=

s�
�s

2

�
2

+ (f + a)
2

(10)

For 1 second steps, r0 = 0:56�, de�ning a circle only 4% larger in area than the actual �eld of view.

2This holds only if the overlap area between the circles is not treated twice, that is, if there is no redundancy in

calculations from one step to another.
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All this assumes that we sort the tiles and stars with simple distance-from-�eld-center tests.

Speci�cally, as stated above, we keep only those tiles that satisfy pi � qk > cos r. At this point

we retrieve the data on all the stars in those tiles. This will be of order several thousand stars on

average, although where the �eld crosses the galactic plane we might be dealing with several tens

of thousands. For each star, we have a direction vector obtained from the input catalog: pij refers

to the direction of star j in box i, already updated for proper motion where necessary. We keep

only the stars that satisfy pij � qk > cos r0.

There is some bookkeeping to be done in the software since we do not want to recompute data

on stars processed in the previous time step (or several previous steps). With 1 second steps there

is considerable overlap between one �eld and the next, and a large percentage of stars identi�ed at

each step will have been processed in a previous step. There are di�erent schemes for performing

the needed checks, the choice depending on how the star data is stored and indexed. Note that it is

not su�cient just to check the tile numbers, since on successive steps di�erent stars may be taken

from the same tile.

3.2 Computing the Focal Plane Positions of the Stars

We next obtain, for time tn, the geocentric position and velocity vectors of FAME, along with the

barycentric position and velocity vectors of the Earth. Summing these vectors in the obvious way,

we obtain F(tn) and _F(tn), the barycentric position and velocity of FAME for the current time

step.

We now apply parallax and aberration, based respectively on F(tn) and _F(tn). As previously

noted, the proportion of stars needing a parallax correction is tiny for the on-board system and

they can be handled as special cases. Aberration is applied to each star using eqn. (3). Star ij's

position as a�ected by aberration (and parallax, where necessary) will be referred to as p0

ij
.

FAME's action takes place in the focal plane. We need to compute the loci of the star images

in this plane and compare them to the positions of pixels on the CCDs. We will use a coordinate

system in which the coordinates of speci�c points on the physical focal plane, e.g., CCD corners

or pixels, have constant coordinate values. Although we could use the spacecraft-�xed [x;y; z]

system for this purpose, it is more convenient to use another spacecraft-�xed coordinate system,

the [u,v,w] system. The vectors u and v lie in the nominal focal plane and the origin of the system

is in the center of the plane. This is obviously a very natural system for expressing the coordinates

of real objects on the instrumental focal plane. For computing the coordinates of star images in

this system, however, it is convenient to think of the focal plane projected onto the celestial sphere.

The axes of the system are oriented such that when the focal plane is projected onto the sky, the
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v axis points toward the instantaneous \pole" where the spacecraft z axis intersects the celestial

sphere:

u = �
z� qk

jz� qkj

v = u� qk (11)

Here, qk is the direction vector of one of the two apertures (k=1 or 2). For stars, the focal plane

is an idealized at surface, w=0, and the star images move across the plane nearly parallel to u.

(The arrangement of CCDs on the focal plane may require use of all three coordinates.) Note that

either w or qk can be thought of as the optical axis.

To determine the (u; v) coordinates of stars we �rst need to account for the way that the sky is

projected onto the focal plane by the optical system. The e�ect of the optical distortion on a star's

position can be represented by a vector function D that maps the star's apparent direction p0
to a

distorted direction p00:

p00

= D(p0

) = �p0

+ �G (12)

where � is a scalar function that describes the spatial variation of the focal plane scale and �G

is a vector function that absorbs any residual distortion. Both � and �G are functions of focal

plane position, hence implicitly functions of p0
. If p00

ij
represents the distorted direction of star ij,

computed as above, the coordinates of the star in the [u,v] system would then be simply:

uij = p00

ij
� u

vij = p00

ij
� v (13)

Note that if �G=0, p0 and p00 are in the same direction; the former is a unit vector but the latter

is not. The function � is just a computational device that lengthens or shortens the direction

vector of each star such that the (u; v) coordinates derived from the vector correctly reect the

radial distortion of the optical system. The coordinates u and v are analogous to the traditional

astrometric focal plane coordinates � and � and are expressed in units of the optical system's focal

length.

Four examples of the main distortion function � are:

(1) � = 1= cos � magni�cation / sec
2 �, increases radially

(2) � = 1 +
1

6
�2 constant magni�cation

(3) � = 1 magni�cation / cos �, decreases radially

(4) � = 1� 3:1 �2 magni�cation / 1� 9:8 �2, decreases radially

where � is the angular distance from the optical axis in radians and cos � = p0

ij
� qk. Note that

\magni�cation" is inversely proportional to \scale", which is usually measured in arcseconds per
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millimeter. Beta function (1) is taken from [6]; it corresponds to a gnomic projection, which yields

tangential or standard coordinates. Beta function (2) is the ideal for an astronomical system, but

is di�cult to produce without a concave focal surface. As of mid-February 2001, the FAME optical

design is described by � function (4), which is equivalent to a 3.59 arcsec/degree3 barrel distortion.

A more precise statement of � function (4) is 1� 3:10702 �2 � 0:546 �4, although undoubtedly the

coe�cients will change before the optical design is �nalized. Because FAME's �eld of view is small,

the computed (uij ; vij) coordinates of a given star are the same to within 0.1 arcsec across the �eld

for the �rst three � functions listed. These four functions do not, of course, exhaust the possibilities

for �.

It might seem that we need to evaluate an arccos function to obtain � for � functions 2 or

4, but actually we need �2, which can be computed to 5 or better signi�cant digits over FAME's

half-degree �eld using �2 = 2(1� cos �) = 2(1� p0ij � qk).

We assume, for the time being at least, that �G is zero.

3.3 Computing the Focal Plane Motions of the Stars

The next task is to compute the directions of motion of the star images across the focal plane. The

time derivative of any arbitrary direction vector r, �xed with respect to the spacecraft, is simply

_r = ! � r, where ! is FAME's instantaneous angular velocity vector (with components expressed

in radians/second), and _r is measured with respect to an inertial system (e.g., the ICRS). If we

imagine r projected to the celestial sphere, then dr = _rdt (in radians) is in the \plane of the

sky". Since ! � r represents the motion, in an inertial system, of a direction r �xed within the

spacecraft, then the opposite vector must represent the motion, in a spacecraft-�xed system, of a

constant direction r in an inertial frame. Thus, the motion of star ij as seen from a coordinate

system �xed in FAME would be _p0ij = �! � p0ij . However, to obtain the instantaneous motion of

the star's image across the focal plane we have to account for the spatial variation of the optical

system distortion. The quantity _p0ij is a starting point, but what we really need is _p00ij , the distorted

motion. This can be accomplished in any of three ways:

(1) We can numerically di�erence the (u; v) coordinates of the vectors D(p0ij) and D(p0ij +

dp0ij), where dp
0

ij = _p0ij dt and dt is a fraction of the interval �t. This approach may be the

simplest both conceptually and computationally.
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(2) We can compute the distorted direction of the star's motion given by

_p00ij =

0
B@ r(D � u)

r(D � v)

r(D �w)

1
CA _p0ij =

0
B@ @Du=@u @Du=@v @Du=@w

@Dv=@u @Dv=@v @Dv=@w

@Dw=@u @Dw=@v @Dw=@w

1
CA _p0ij (14)

where Du = D �u, etc., and the various partials of D are evaluated for p0ij . It is not clear whether

the partials that contain w are important (or even what they mean in this case), since _p0ij has a

very small component in the w direction; it is possible that this formula would work equally well

with the right column and bottom row of the matrix set to all zeros.

(3) If �G=0, we can use the equation

_p00ij = (r� � _p0ij)p
0

ij + � _p0ij (15)

where � and r� are evaluated for p0ij .

Note that if the maximum optical distortion at the edge of the �eld is smaller than the error

tolerance for the calculation, it may be better to ignore the distortion entirely rather than to use

the distortion gradient as part of a �rst-order extrapolation of the star image motion. This is

especially true when �s = (0:15�=s)�t is a signi�cant fraction of the �eld width. In such cases,

the gradient of the distortion at one point of a star's path across the focal plane will not provide

an adequate prediction of the star's position �t later, and more accurate results may be obtained

by simply setting _p00ij = _p0ij .

Once the vector _p00ij is determined, its ( _u; _v) coordinates are simply

_uij = _p00ij � u

_vij = _p00ij � v (16)

which are expressed in units of the optical system's focal length per second. The star's motion

makes a small angle  with respect to the u axis, where tan = _vij= _uij ; _uij is always positive.

The instantaneous speed of the star image motion across the focal plane is _sij =
q
_u2ij + _v2ij . We

will need to know the quantities _sij and cos , which can be computed to su�cient precision using

_sij � _uij +
1

2

_v2ij

_uij
(17)

Then cos = _uij= _sij . These two quantities are precise to about 12 signi�cant digits (assuming

exact values of _uij and _vij) for j j < 0:1�, which is realistic for FAME.
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It is good to remember that uij , vij , _uij , _vij , _sij , and cos have been computed for the speci�c

instant tn. These are the linear parameters of star ij's instantaneous motion across the focal plane,

which would slowly change with time if we tracked the star's actual curved path.

3.4 Computing Where and When a Star Crosses a CCD Row

Having de�ned a linear approximation to the locus of a star's image in the focal plane, when does

the image intersect the readout row of pixels on one of the CCDs and on what column does that

occur?

We obviously need to know the (u; v) coordinates of pixels [4095,0] and [4095,2047] on each

CCD, de�ning the corners on the readout end of the chip. For use with this development, these

coordinates should be expressed in units of the system focal length, F , nominally 15 m. Of course,

we will not know these coordinates precisely enough initially for data analysis; they will have to be

determined from the observations. However, the a priori coordinates will probably be good enough

for the on-board or quick-look system. If necessary, the coordinates could be updated at any time.

It is also to be expected that for the high-precision computations, the CCDs may have non-

negligible w coordinates, which may be di�erent for each corner. That is, the CCDs may be

elevated or depressed and tilted with respect to our idealized focal plane. That e�ect is not dealt

with explicitly here because I assume that such a geometry will manifest itself in the observations

as a shift of the e�ective (u; v) coordinates of the CCD corners, which can be solved for from the

equations given here. Similarly, the entire instrumental focal plane is likely to be shifted and tilted

from its nominal placement and that the usual \plate constants" will have to be determined. The

plate model can then be used to correct the (u; v) coordinates of the CCD corners used in this

development.

We want to know the column number that a star image will be travelling along at the readout

end of the CCD and the time that the image will cross the last row of pixels there. Since both

the pixel row and the star image motion are straight lines (in this approximation), this is a simple

problem. Let pixels [4095,0] and [4095,2047] of a given CCD | the corner pixels on the readout

end | have coordinates (u0; v0) and (u1; v1), respectively.
3 See Figure 2. De�ne the following

quantities:

3The coordinates of a pixel are assumed here to refer to the center of the pixel. The \readout end of the CCD"

is thus actually a line running along the centers of the pixels in the last row (row 4095) of the CCD. In this scheme,

the photosensitive area of the CCD extends 1/2 pixel (approximately) beyond the lines de�ned by the coordinates of
the pixels on the edge of the chip.
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m = _vij= _uij

b = vij �muij

k = (u1 � u0)=(v1 � v0) (18)

a = u0 � k v0

The quantity m is the slope of the star motion line with respect to the u axis and k is the slope

of the CCD row with respect to the v axis; both are � 1. In Figure 2, the star motion line makes

an angle  (negative in the �gure) with the u axis and m would then be tan . The quantity b is

the intercept of the star motion line on the v axis and a is the intercept of the line de�ned by the

CCD row on the u axis. The two lines in question meet at the point I:

Intersection point I = (uI ; vI) =

�
kb+ a

1� km
;
ma+ b

1� km

�
(19)

which is always well de�ned since jkmj � 1 and the denominators are � 1. The (uI ; vI) coordinates

of point I can be easily transformed back into pixel numbers. The column number, cij , that the

star image crosses at the end of the CCD is simply

cij = 2047

�
vI � v0

v1 � v0

�
(20)

Obviously if this conversion results in cij < 0 or cij > 2047 then the star will not be observed by

the CCD in question. These calculations should be repeated for all 24 CCDs.

The time tij that the star ij crosses point I depends on the length of the line segment joining

points (uij ; vij) and (uI ; vI) and the rate of motion, _sij , of the star image:

tij = tn �

q
(uI � uij)2 + (vI � vij)2

_sij

� tn +
uI � uij

_sij cos 
� tn +

uI � uij

_sij
(21)

where the sign of the second term in the �rst equation is the same as the sign of uI � uij . The

second and third equations allow us to avoid the square root function. They are approximations

that work quite well | to 12 and 6 signi�cant digits, respectively | for the small values of  that

we encounter. (Actually, the second equation is exact as shown, but our values of _sij and cos ,

obtained using eqn. (17), are approximations.)

3.5 Corrections for O�set of CCD Charge Distribution

So far, we have determined the time when a given star image crosses the last row of pixels (row

4095) on a CCD chip, and the column number that it crosses. Note that this is not, in general,
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the exact time or place that the center of the CCD charge packet generated by the star image

will arrive there. That is, the algorithm described above deals with photons, not electrons. The

electron distribution moving along the CCD is smeared in both directions by a number of e�ects,

and systematic shifts of the �nal centroid will occur. For example, the mismatch of TDI rate and

star motion rate and the quantized nature of the charge transfer process along the CCD tend to

separate the electrons from the photons in the u direction. Similarly, the cross-scan motion of the

star as it moves across the CCD smears out the charge in the v direction, e�ectively shifting the

column that will be measured for the center of the charge distribution.

First-order corrections for these e�ects are simple. Consider the cross-scan motion �rst. The

slope of the line de�ning the linear component of the star's motion with respect to the long edge of

the CCD is just m+k, since jmj and jkj are individually quite small. The number of CCD columns

that the star image crosses is then 4096 jm + kj; this is the amount of cross-scan smearing of the

PSF. The e�ective center of the charge distribution is thus shifted by half this amount:

cij charge = cij � 2048 (m+ k) (22)

The in-scan smearing due to a TDI rate mismatch is similar. Suppose the star motion rate, sij ,

and the TDI rate, stdi, are measured in units of the system focal length per second (F = 15 m and

1 pixel = 10�6F ). The number of rows of in-scan smearing is just 4096 jsij=stdi� 1j. The time that

the e�ective center of the charge distribution arrives at the last row of pixels is then

tij charge = tij � 2048� 10�6
 

1

sij
�

1

stdi

!
(23)

where we have neglected the small component of cross-scan motion in the scan direction.

Most stars will cross several CCDs, so there may be as many as four intersection points I for

each star. Each one de�nes a FAME observation. All of the computed observations for all stars in

both �elds of view should be sorted by time tij charge and transferred to whatever system needs to

act on them. The program can then cycle to the next time step, tn+1 = tn + �t, and repeat the

procedures outlined beginning at Section 3.

4 Remarks and Notes on Extension

A simple algorithm has been provided for determining FAME's observation sequence, using very

simple equations. For �t = 1 second, the accuracy of the basic algorithm is a half pixel (0.1 arcsec),

which is set by the neglect of the curvature of the star's path due to the optical distortion (for
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the optical design of February 2001), as well as the approximations used in the corrections for the

charge packet o�sets. This accuracy is good enough for the on-board or quick-look system, or as

a fast way to establish a �rst-order approximation to the observation geometry at a given time

within the context of a more complete analysis.

The basic algorithm as outlined requires no trig or other transcendental functions that must be

executed for each star at each step. Of course, there will be a great many \hidden" trig functions

associated with determining FAME's instantaneous orientation, a non-trivial process not considered

in this note. A few more are required for computing FAME's position and velocity for aberration.

However, these calculations are performed only once per time step. The important thing is that at

each step there are no per-star trig functions that could easily accumulate to great numbers given

the size of the input catalog.

If a higher accuracy calculation is needed, the algorithm presented above would need a number

of revisions. The aberration calculation would have to be made relativistically correct and the grav-

itational deection of light added in. A larger fraction of the stars would need parallax corrections,

and proper motion updates would have to be done much more frequently. The evaluation of the

orbital position and velocity of both the Earth and FAME would become much more complex. The

expression _p0

ij = �! � p0

ij would need an extra term for the rate of change of the star's apparent

position in inertial space (mainly due to aberration). More fundamentally, the above development

assumes that the motion of the star images across the �eld of view is linear. There are a variety

of e�ects, some involving the spacecraft's spin dynamics and others involving the distortion �eld,

that invalidate this assumption for high accuracy calculations (see, e.g., discussion at beginning of

Section 3).

The obvious way of using the scheme presented here for higher accuracy calculations is to use

it iteratively. The process outlined in Section 3 results in a list of stars, observation times, and

CCD column numbers, with the observables good to about 0.1 arcsecond, given our spacecraft spin

model. To improve on this, it would be necessary to iterate the entire process on each observation

individually. That is, for each observation (star-CCD combination), we would use the computed

tij as if it were a tn, and go back though the calculations starting at Section 3.1 (obviously the

star selection process can be skipped). This allows us to obtain the spacecraft orientation from

our spin model for an instant within 0.3 ms of the actual observation time (as predicted by our

model), which means that we extrapolate the star's motion across the focal plane over a much

shorter distance. E�ectively, we iterate the nonlinearities out of the process. Of course, we are now

in a computationally more intensive regime since we are dealing with each observation individually,

but the equations within each iteration remain simple.

For analysis of simulated or real observations, the �rst cut through the process is not even

necessary, since we start (after image centroiding, that is) with a list of stars, CCD identi�ers,

18



observation times, and column numbers. The iterative process will then yield C's based on our

models that can be subtracted from the given O's to form (O � C)'s. The task yet to be done is

to use the equations presented here to derive the expressions for the partials of various interesting

model parameters in terms of the two orthogonal observables, time and column number.

Note that although the iterative process can produce more accurate CCD column numbers and

last-row crossing times for the star images, the corrections for the o�set of the charge packet are not

improved by iteration. The actual o�sets depend on the whole history of the star's nonlinear motion

across the CCD, whereas the simple corrections presented above assume linear motion. Thus, to

improve the match of the C's with the O's, better models for the o�set of the charge distribution

will have to be developed. Since, in the process outlined above, each star's location on the focal

plane is determined a number of times, enough information on the star's actual track should be

available to serve as a basis for such models. Hopefully, an accurate analysis of observations will not

require us to deal with the pixel-by-pixel history of each star's image motion across the length of

each CCD. If such detail is required, then the approach outlined here is inappropriate and iteration

won't help. In that case, the entire process becomes signi�cantly much more complex and the

computational load increases dramatically.
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A Generalized Formula for Aperture Directions

In Section 2.4, eqn. (4) for the directions of the two spacecraft apertures is given as

q1 = �x sin(=2) + y cos(=2)

q2 = x sin(=2) + y cos(=2)

where  = 84:3� is the basic angle, and x, y, and z refer to the directions of the spacecraft-�xed axes

expressed in the ICRS system. This assumes that the spacecraft y axis bisects the two apertures,

and that both apertures are parallel to the x-y plane.

Suppose neither of the above two assumptions holds. The direction of the leading aperture, q1,

can be speci�ed in the spacecraft-�xed system by two angles, 1 and �1, which can be thought of

as the \longitude" and \latitude", respectively, of the aperture. (Note that we are concerned here

only with the directions of the apertures | the extension of their optical axes to in�nity | and not

the physical locations of the apertures on the spacecraft.) Latitude is measured with respect to the

spacecraft equator, the x-y plane. The origin of longitude is the y-z plane, with positive longitudes

measured counterclockwise as viewed from +z. The trailing aperture, q2, can be speci�ed by the

angles 2 and �2. We expect that 1 � �2 � =2 and that both �1 and �2 are small.

Then eqn. (4) can be replaced by

q1 = �x cos �1 sin 1 + y cos �1 cos 1 + z sin �1

q2 = �x cos �2 sin 2 + y cos �2 cos 2 + z sin �2

For the case 1 = �2 = =2 and �1 = �2 = 0, this reduces to eqn. (4).

In the general case, the basic angle is  = arccos(q1 � q2) � 1 � 2.
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Figure 1.  The path of one of FAME’s fields of view across the sky.
The arc length ∆s is the distance that the field moves in one
software cycle time ∆t.

FOV



u

v

[4095,0]

[4095,2047]

u0
uI

u1uij

vij

v0

vI

v1

ICCD

ψ

Figure 2.  The path of a star across FAME’s focal plane,
showing its intersection point, I, with the last row of pixels
on one of the CCDs.
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